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This paper presents experiments on run-up of strongly nonlinear waves on a beach of
10.54◦ inclination. Velocity fields are obtained by the PIV (particle image velocimetry)
technique. Acceleration measurements are also attempted, but it is difficult to obtain
useful results in every case. In addition, free-surface profiles are extracted from
digital images and wave resistance probes. The investigation focuses on the dynamics
of the early stages of the run-up, when steep fronts evolve in the vicinity of the
equilibrium shoreline, but maximum run-up heights are also reported. Measurements
on moderately nonlinear waves are compared to results from long-wave theories,
including a numerical Boussinesq model and analytic shallow-water results from
the literature. In particular the applicability of the long-wave theories is addressed.
However, most attention is given to run-up of high incident solitary waves that are on
the brink of breaking at the shoreline. In one case a temporarily slightly overturning
wave front is found that neither develops into a plunger or displays appreciable
spilling. This feature is discussed in view of measured velocity and acceleration
patterns and with reference to the dam-break problem. Effects of scaling, as well as
viscous damping, are also briefly discussed.

1. Introduction
The present study is particularly motivated by research on tsunamis due to

earthquakes and submarine slides. Since 1990 we have not seen any event comparable
to the larger historic ones. Nevertheless, during this time thousands of lives have
been lost in tsunami disasters, in addition to huge damage to coastal installations
and buildings. A complete study of the tsunami phenomenon involves a series of sub-
topics of fundamental importance both from a geological and hydrodynamic point
of view. However, the ultimate goal is always prediction of the tsunami impact and
run-up on shores, breakwaters and harbour installations. Run-up of waves has been
an important theme in hydrodynamic wave theory for many decades. In addition
to tsunamis the topic concerns a number of other applications, for instance coastal
erosion and sedimentation by swells, construction of absorbing beaches in laboratory
wave tanks and coastal disintegration of internal waves on the pycnocline.

Theoretical treatment of run-up has traditionally been based on nonlinear shallow-
water theory. On plane slopes some analytical solutions have been found for both non-
breaking waves (Carrier & Greenspan 1958), and bores (Keller, Levine & Whitham
1960; Shen & Meyer 1963; Meyer & Taylor 1972). The analytical solutions have
been developed further by Synolakis (1987) and others. In numerical computations
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on an Eulerian grid, points must be dynamically included or excluded from the
computational (wetted) domain according to the motion of the shoreline, as reported
by, for instance, Hibberd & Peregrine (1979), Flather & Heaps (1975), Kowalik &
Murty (1993) and Titov & Synolakis (1998). An alternative is the use of Lagrangian
coordinates as is found in, for instance, Pedersen & Gjevik (1983) and Zelt & Raichlen
(1990). Crude bore models may be included in long-wave models as jumps, that may
be sustained and kept sharp by particular techniques. Synolakis & Skjelbreia (1993)
attempts a complete description of shoaling of solitary waves, both post and pre
breaking, where various theoretical and experimental results from the literature are
employed.

Recent applications of more general models for shoaling and run-up mainly fall into
two categories: full potential theory represented as integral equations and Navier–
Stokes solvers with volume of fluid (VOF) techniques for the free surface. Important
publications based on higher-order boundary integral methods are Grilli & Svendsen
(1990) and Grilli, Svendsen & Subramanya (1997) that emphasize breaking criteria
and characteristics during run-up and therefore are of particular significance in the
present context. Run-up computations based on Navier–Stokes equations are reported
by Lin, Chang & Liu (1999), Guignard et al. (2001) and others.

Quite a number of experimental investigations on run-up have been reported.
Traditionally surface elevations have been measured by wave gauges or the maximum
run-up height has been observed visually. Some of the older work is surveyed in Meyer
& Taylor (1972), while more recent results for solitary waves are given in Synolakis
(1987). Employing digital images and a special optical run-up wave gauge, Li &
Raichlen (2001) report surface measurements for solitary waves on a 1:2.08 slope and
compare with analytical predictions. Swash zone dynamics is important with respect
to sedimentation and beach erosion; see recent reviews by Longo, Petti & Losada
(2002) and Elfrink & Baldock (2002). Field measurements involving pressure sensors,
current meters, FOBS (fiber-optic optical backscatter sensor) and video tracing of the
shoreline were carried out by Puleo et al. (2000). Foote & Horn (1999) used video
images for surface capturing in the swash zone and observed significant discrepancies
from traditional wave probe data. Petti & Longo (2001) employed laser-Doppler
velocimetry (LDV) for velocity measurements at selected vertical sections of the
swash zone, while wave gauges and cameras were used for surface measurements.

The accurate measurement of velocities within a wave is complicated. However, due
to improved technology in the last few decades several methods have been developed
that have accomplished this with increasing success. Nadoaka, Hino & Koyano (1989)
used a fibre-optic laser-Doppler anemometer (LDA) to study the turbulent flow field
under a breaking wave on a 1:20 slope. Ting & Kirby (1995, 1996) employed LDA
and wave gauges for a strong plunging and a spilling breaker respectively, on a 1 in
35 slope. They obtained good descriptions of the structure of the turbulence in both
types of waves.

Using the newer method of particle image velocimetry (PIV) the full velocity field
can be obtained. PIV can still not be used in aerated regions, but, applied with care,
the method can be successful in capturing velocities in some other difficult situations
such as in the crest of a broken wave (see for example Craig & Thieke 1996). Chang
& Liu (1999) present an experimental study using PIV to investigate turbulence in a
spilling breaker. They examined the number of repetitions required for obtaining good
representations of averaged quantities and concluded that 16 seemed appropriate.

There are also a few studies in the literature on the measurement of accelerations.
The measurement of accelerations is difficult because it involves the subtraction of
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two velocity fields, at slightly different times, both of which are subject to random
noise. Due to the small difference between the velocity fields, the relative error
is then dramatically increased. Chang & Liu (1998) in a brief paper give some
estimates of accelerations in a overturning jet. Jakobsen, Dewhirst & Greated (1997)
describe the techniques for measuring accelerations with PIV and give some analysis
on the errors which occur when using this technique. They claim to be able to
measure accelerations to within 3–7%. Jensen et al. (2001) use a two-camera system
for measuring accelerations in Stokes waves. The measurements of accelerations in
short-crested waves gave the best results with relative standard deviations down to
2%.

While PIV and LDA experiments on surf zone dynamics has been the subject of a
series of papers there has been less work on the detailed velocity distributions for a
wave running up a beach. Lin, Chang & Liu (1999) used the volume-of-fluid model
(VOF) described in Lin & Liu (1998a, b) to examine solitary waves running up and
down a beach. They compared the computations with PIV experiments for a rather
long non-breaking wave on a steep slope of 30◦, and found good agreement. Breaking
waves on a much milder slope (2.88◦) were also computed, but were compared only
to the surface measurements of Synolakis (1987), again with good agreement.

Until now, there have been no experimental investigations on the detailed
distribution of velocity and acceleration in the run-up of steep waves and breaking
waves. In the present article we focus on PIV investigations of the early stages
in the run-up of nearly breaking waves. This is an important step toward a more
complete understanding of wave run-up. In particular, we believe that run-up of waves
bordering on breaking may have important features in common with run-up of bores.
The run-up measurements are compared to computations from a Boussinesq-type
model, which is fully nonlinear, but does not include higher-order dispersion terms.
The main intention behind the comparison is to check the measurements, while
emphasis is also put on the applicability of this kind of long-wave model to run-up
of steep waves. Some other aspects are pursued in a related paper (Wood, Pedersen &
Jensen 2003) where an industrial Navier–Stokes solver is employed. The computations
were hampered by a spurious boundary layer at the surface and the steepness of wave
fronts during run-up was under-predicted. Nevertheless, reasonable overall agreement
with experiments reported herein was achieved for the surface elevation and the
velocities.

2. Motivation and basics
2.1. Experimental set-up and techniques

The experiments were performed in a wave tank at the Hydrodynamic Laboratory,
Department of Mathematics, University of Oslo. The wave tank is 1 m high, 0.5 m
wide and is constructed with deviations in the depth and width less of than 0.5 mm.
At one end of the tank waves were generated by a hydraulic piston attached to
a vertical paddle. A definition sketch of the wave tank and the beach is given in
figure 1. The majority of the experiments were carried out with an equilibrium depth,
h, equal to 20 cm, while a selection of the experiments were also performed at half-
scale. Unless otherwise noted the full scale experiments are reported. In the run-up
experiments a rather steep beach, with an inclination θ = 10.54◦, is located at a
distance L = 3.705 m from the initial position of the wave maker. The beach is made
of Perspex, which expands a little due to water absorption and becomes slightly
bent. Even though the resulting deformation of the beach is small (less than 1 mm),
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Figure 1. Definition sketch of the wave tank.

observable three-dimensionalities near maximum run-up are produced. The slope
angle is slightly below the limiting angle of 12.5◦, above which no incident solitary
wave breaks during run-up, according to Grilli, Svendsen & Subramanya (1997) (see
§ 2.4).

In the PIV measurements a light sheet was created by a continuous wave (CW)
laser and a scanning system. The laser beam was modulated with an acousto-optic
modulator which selects two or more pulses for PIV recordings. Highly-sensitive
CCD cameras with a resolution of 1280 × 1024 pixels and 12-bit digital outputs were
used for image acquisition. The triggering has a variability of less than the scanning
period of the PIV system, set between 1 and 12 ms in the experiments. This limits
the repeatability. In all experiments an interrogation window of 64 × 64 pixels with
an overlap of 50% was used. The post-processing procedure and the PIV system
are described in more detail by Jensen et al. (2001). Conifer pollen was added to
the flow as seeding particles. The presence of the organic pollen led to growth of
bacteria and algae that increased the opacity of the water, which had to be changed
regularly. Hence, in a few measurements in constant depth we switched to 50 µm
polyamid particles. No significant differences between the polyamid and the pollen
measurements were observed.

Many of the measurements are made in fluid regions above the equilibrium water
level and are calibrated according to the sheet being viewed through water. Then, for
instance, when the water level is low the surface may be viewed nearly horizontally,
or even slightly from above. Consequently, the region near the surface is distorted due
to refraction and reflection effects at the free surface. Hence, in some images there
was some loss of information near the free surface of the fluid. Naturally, refraction
effects at the tank sidewall lead to nonlinearities in the mapping between physical
coordinates and the image frame that are not taken into account by the PIV software.
However, since we employ small fields of view and the cameras were aligned nearly
perpendicular to the tank sidewall these errors were negligible.

During run-up PIV was employed with five fields of view (FOVs) that were chosen
according to the characteristics of the different waves and the wish to identify the
physical mechanisms in the first stage of the run-up (table 1). The quality of each
experiment is carefully checked with respect to the correlation between subsequent
images, which occasionally becomes too low. This may be due to inhomogeneous
seeding of particles and optical effects that may be linked to pollution of the sidewall
of the tank. A sufficient number of repetitions are made to yield a minimum of three
measurements that are valid in the interior of the fluid. While this is adequate for
a general assessment of repeatability, the typical number of realizations (3–6) is far
too small for any rigid statistical analysis of the experimental data. Nevertheless, the



An experimental study of wave run-up at a steep beach 165

FOV x-span (cm) y-span (cm) Cases (and times)

(i) −15.7< x < 1.2 0.9< y < 14.5 IV (3.1, 3.12)
(ii) −5.5< x < 6.1 0.5< y < 9.7 I (4.4), II (3.04), III (3.47), IV (3.05)
(iii) −19.5< x < −7.50 3.1< y < 12.6 II (3.16), III (3.7), IV (3.14)
(iv) 1< x < 22.8 −10.6< y < 6.9 I (4.55, 4.8. 5.05)
(v) −6.9< x < 6.1 −0.15< y < 9.9 (h = 0.1m) III (2.51, 2.62), IV (2.12, 2.18)

Table 1. FOVs in cm and trigger times in s.

outcome of the standard deviation formula may yield a fair idea of the quality of the
measurements and we refer to it as a scatter measure.

In addition to the velocity measurements by PIV, wave heights were measured by
resistance wave probes at two selected locations. The digital images from the PIV
system were also used to estimate the free-surface location with a bitmap viewer.
Due to optical effects and the high exposure time needed to capture the small pollen
particles the digitized surfaces are generally less reliable than the PIV velocities.

2.2. Accelerations

Accelerations are much harder to obtain from the PIV technique than velocities.
In highly controlled experiments Jensen et al. (2001) were able to extract accurate
local accelerations (∂v/∂t) for Stokes waves. Herein we need material accelerations,
which imply that spatial gradients must also be accounted for. In spite of the good
accuracy and a high degree of repeatability in our PIV measurement, there are still
small errors, with rapid spatial and temporal fluctuations, that render extraction of
gradients and accelerations difficult. This problem is aggravated since the noise in
our run-up experiments is scaled by the large and dominant onshore translation (see
§ 4), while the velocity gradients are relatively weak. Hence, we have succeeded only
for the cases with the largest accelerations compared to the noise level of the velocity
fields.

The first step toward determination of gradients is smoothing. Some smoothing,
within the interrogation domain, is inherent in the PIV algorithm (see for example
Raffel, Willert & Kompenhans 1998). To the resulting PIV velocities we apply
the standard symmetric three point smoothing scheme in the interior and the
corresponding asymmetric scheme on the boundary. The procedure is generally
repeated 2–4 times. The accelerations were computed in two ways from the subsequent
velocity fields v(x, y, t) and v(x, y, t + �t). First, finite differences can be applied to
calculate all derivatives needed to evaluate the material derivative of the acceleration
a = ∂v/∂t + v · ∇v. However, the results presented herein are obtained by tracing
imaginary fluid particles over the time span �t . Denoting the position and velocity
of a particle at t by r1 and v1, respectively, we employ a mid-point integration of
position with time to obtain the implicit expression

v(x2, y2, t + �t) = v2, r2 = r1 +
�t

2
(v1 + v2), (2.1)

where r2 ≡ (x2, y2) and v2 are the position and velocity at time t + �t . Velocities at
locations not coinciding with grid points are generally found by bilinear interpolation,
or by linear interpolation within triangles close to the fluid margin. Equation (2.1)
is solved by a simple iterative technique, where new r2 and new v2 are computed
alternately. Generally, two iterations suffice. Finally the acceleration is calculated by
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the difference

a =
1

�t
(v2 − v1). (2.2)

Naturally, this approximates most closely the value at position r = 1
2
(r1 + r2) and

time t + 1
2
�t . However, the error by assigning it to the coordinates r1 and t is small

compared to the errors inherited and amplified from the velocity fields.

2.3. The Boussinesq-type model

The experiments are compared to solutions of a set of Lagrangian Boussinesq-type
equations similar to those described in Pedersen & Gjevik (1983, referred to herein
as PG). In traditional Boussinesq-type equations the dispersion term is linearized. In
PG only the dispersion terms involving products of velocities were omitted, while
nonlinearities in displacements were retained. However, in our detailed study on
steep waves in the early stages of run-up it seems appropriate to avoid any kind of
linearization to eliminate this as a potential error source.

Following the usual convention of using a typical depth h0 and a wavelength L as
vertical and horizontal length scales, respectively, and (gh0)

1/2 as velocity scale, we
introduce dimensionless variables. Note that these are employed only in the present
subsection and at the end of the Appendix. The long-wave parameter now becomes
β ≡ h2

0/L
2. We seek equations with relative error of order β2, while all terms of

order β are kept, regardless of the degree of nonlinearity. By some tedious, but
straightforward, algebra we derive such an equation from intermediate results in PG.
Omitting a few details that are irrelevant in the present context, their fully nonlinear
momentum equation can be expressed as

Du

Dt
= −∂η

∂x
+ β

∂

∂x

(
E − E|y=η

)
, (2.3)

where () indicates vertical averaging, η is the surface elevation and (D/Dt) ≡ (∂/∂t)+
u(∂/∂x) is a material derivative. The quantity E may be expressed as

E ≡ Dφ̂

Dt
+

1

2

(
∂φ̂

∂x

)2

, φ̂ =
1

2H

DH

Dt
y2 +

(
Dη

Dt
− 1

H

DH

Dt
η

)
y, (2.4)

where H ≡ h+η is the total water depth and φ̂ is the part of the velocity potential that
corresponds to the vertical velocity. Expanding the rightmost term of (2.3), correcting
a minor typing error in (2.3) of PG, and including the equation of continuity we
arrive at the set

DH

Dt
= −H

∂u

∂x
, (2.5a)

(
1 − 1

2
βHh′′ − βh′ ∂η

∂x

)
Du

Dt
= −∂η

∂x
− β

3

[
H

∂

∂x

(
D2H

Dt2

)
+2

∂H

∂x

D2H

Dt2

]

+ β

[
h′

H

(
DH

Dt

)2

− h′′u
DH

Dt
+

(
∂η

∂x
h′′ +

1

2
Hh′′′

)
u2

]
,

(2.5b)

where h′ is the x-derivative of the equilibrium depth. In comparison to the formulation
of PG there are two groups of new terms, that both vanish in constant depth. One
group is collected in the last line of the momentum equation (2.5b). It is noteworthy
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that only one of these terms contributes on a plane slope, and their effect is generally
very small. Slightly more important is the term, rightmost within the parentheses, on
the left hand-side of the momentum equation. This is the only term of order β that is
non-vanishing at the shoreline on a plane slope, yielding a shoreline acceleration
Du/Dt = −∂η/∂x/(1 − βh′∂η/∂x). Hence, there is a singularity in the shoreline
acceleration when the fluid surface is perpendicular to the beach, while the PG
formulation remains regular until the surface becomes vertical. This imply differences
concerning breaking, but the singularities are in any case beyond the validity range
of the equations. For a solitary wave with A/h = 0.34, we find that the new term
introduce a 1%, say, change in the run-up phase that mainly corresponds to a time
delay (about 0.002 s for h = 20 cm). The effect on the maximum run-up height is
much smaller.

Due to the higher-order derivatives of h in the momentum equation we need
third-order continuous derivatives of the depth function. Hence, the angle between
the beach and bottom is replaced by a sixth-order spline extending some fraction
of the slope length. Tests indicate that this deviation from the laboratory geometry
may give rise to relative errors of order 10−3.

As in PG we define an averaged Lagrangian coordinate a according to

Da

Dt
= 0.

Recognizing the material derivative as the partial Lagrangian temporal derivative we
may integrate the continuity equation (2.5a) to obtain

H
∂x

∂a
= H0,

where H0 is the initial height of the fluid column. We note that this equation explicitly
expresses mass conservation in the column. The full Lagrangian version of (2.5) is
now easily obtained by making the replacements

D

Dt
→ ∂

∂t
,

∂

∂x
→ H

H0

∂

∂a
.

The advantage of the Lagrangian formulation is that both the shoreline and paddle
positions are associated with fixed values of a. At these locations we invoke the
boundary condition H = 0 and the measured paddle motion, respectively.

Our numerical method employs a staggered time discretization (x, H and u at
adjacent temporal positions), whereas PG used a Crank–Nicholson scheme. We then
obtain improved dispersion properties at the cost of unconditional stability, while an
iteration procedure now is needed to incorporate all nonlinearities with second-order
accuracy. Otherwise the methods are very similar and the numerical representation
of the additional nonlinear dispersion terms is rather straightforward. Hence, apart
from noting that no filtering of any kind is applied and that linear wave modes in
constant depth are neutrally stable (no damping inherent in the model), we omit
further details on the numerical technique. For the nonlinear shallow-water equations
a similar Lagrangian model has been presented and tested for three-dimensional
problems, as well as propagation and run-up of bores (Johnsgard & Pedersen 1997;
Johnsgard 1999).

When the Lagrangian counterpart of (2.5) has been solved numerically, the
requirements of zero divergence and rotation may be used to restore the vertical
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variations in the velocity fields according to

v(x, y, t) =

(
Dη

Dt
+

∂u

∂x
(η − y) + O(β)

)
,

u(x, y, t) = u + β
(
A1

(
y + 1

2
H

)
+ A2

(
y2 − 1

3
H 2

))
+ O(β2),

A1 =
∂

∂x

(
Dη

Dt
+ η

∂u

∂x

)
, A2 = −1

2

∂2u

∂x2
.




(2.6)

To evaluate these expressions at the appropriate spatial and temporal position we
apply an extra set of interpolation and differencing to the numerical solution. However,
grid refinement tests ensure that the total discretization errors are negligible, apart
from in the close vicinity of the instantaneous shoreline.

2.4. The run-up phenomenon

Following, in part, Grilli, Svendsen & Subramanya (1997), we may define four regimes
for run-up of solitary waves on beaches. Generally, on going down the list, as given
below, the amplitude increases or the beach inclination decreases, even though not all
the regimes may be observed for a given beach inclination.

(a) A smooth and gentle run-up where the surface gradient never becomes vertical.
The steeper waves in this regime break during backwash.

(b) The wave front becomes vertical, or nearly vertical, when the wave reaches
the equilibrium shoreline. The steep front may propagate some distance up-beach,
but it never forms a plunger and is transformed into a smooth thin wedge of fluid
that climbs the beach. The range of this intermediate regime may be appreciable.
For instance, for run-up on a 1:8 slope beach Grilli, Svendsen & Subramanya (1997)
report that solitary waves with amplitude/depth ratios ranging between 0.25 and
some upper limit above 0.4 belong here. In Grilli, Svendsen & Subramanya (1997) the
denotation surging breaker is used for the steep fronts in this intermediate regime.
However, we do not employ this herein.

(c) The incident wave produces a plunger in the vicinity of the equilibrium shoreline.
In some cases a ‘splash-up’ is observed when the plunger hits the beach.

(d) Breaking occur at a finite distance from the shore and a fully developed bore
is produced. At the shoreline the bore vanishes and a thin tongue of fluid flows up
the beach, as for case (b).
Naturally, there are other ways of defining regimes and the boundaries between the
regimes may be hard to determine accurately. However, there are a few breaking
criteria available in the literature, among which we mention two. Based on analytic
solutions where hydrostatic, nonlinear equations at the slope are patched to a linear
hydrostatic regime in the adjacent flat bottom region, Synolakis (1987) arrived at

A

h
= 0.818(tan θ)10/9. (2.7)

Grilli, Svendsen & Subramanya (1997) reports a breaking criterion for solitary waves
based on least-squares fitting of computational results obtained from a boundary
element method for full potential flow. Expressed in our notation the criterion reads

A∗

h
= C∗ tan2 θ, (2.8)

where C∗ = Cb = 16.9 and C∗ = Cc = 25.7 define the lower limits of regimes (b)
and (c), respectively. Inserting our slope inclination, θ = 10.54◦, we find A/h = 0.126
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and Ab/h = 0.585 from (2.7) and (2.8) respectively, while Ac exceeds the maximum
solitary wave amplitude of approximately 0.83h. That (2.7) yields a lower value is to
be expected since omission of dispersive terms leads to over-prediction of steepening
during shoaling. Moreover, the large discrepancy indicates that hydrostatic theory
is inappropriate for the high (and short) incident solitary waves that are close to
breaking for θ = 10.54◦.

Herein we are primarily concerned with cases (a) and (b). However, it is useful to
give a brief discussion of regime (d), run-up of bores, which is particularly important
with respect to tsunami applications. Within the scope of nonlinear shallow-water
theory, with bores represented as discontinuities, there is a fairly complete analytical
tradition in the literature, reviewed by Meyer & Taylor (1972). The incident bore
evolves smoothly during shoaling, but vanishes, or rather collapses, very rapidly
at the equilibrium shoreline. Run-up then occur as a thin tongue, where gravity
dominates the pressure gradient parallel to the beach. A crude conception of the run-
up itself, as long as frictional effects are neglected, may then be a set of independent
fluid particles following parabolic trajectories in time. The maximum run-up height
of each particle then depends on its velocity when ‘released’ close to the shoreline,
which in turn is defined by the characteristics of the bore collapse. For physical bores
this velocity may be influenced by details of the bore structure, as well as the width
compared to amplitude. Concerning run-up predictions, this may make questionable
the applicability of the crude bore models in shallow-water theory, where the bore is
represented as discontinuity with no specific width or structure. The run-up of regime
(b) waves, as well as steeper waves of regime (a), follow a pattern similar to that of
incident bores. A steep wave propagates to, or somewhat beyond, the equilibrium
shoreline where it collapses and is transformed rapidly to a thin jet that again is
dominated by gravity (see figure 3b below). Hence, the study of nearly breaking
waves may be a good starting point for run-up investigations and the transformation
of the steep front should be scrutinized.

Maximum run-up heights are not the key issue of the present work, but observed
values are reported and compared to theory. From Synolakis (1987) we have the
simple asymptotic (A/h � 8.3 tan2 θ) expression

R

H
= 2.831

√
cot θ

(
A

H

)5/4

, (2.9)

which is based on the same theory as (2.7). The formula (2.9) agrees well with
computations of maximum solitary wave run-up from our Boussinesq model for small
A/h and θ , while it yields higher values for larger A/h. This is probably because the
nonlinear shallow-water theory yields too much steepening during shoaling, which in
turn produces too high a run-up. Our inclination angle, θ = 10.54◦, is a little large for
(2.9), but the formula gives the same results as the Boussinesq model for A/h around
0.08. However, an important observation is that both the model and (2.9) always give
run-up amplification factors, R/A, that grow with A/h, though at a decreasing rate
for increasing A/h.

2.5. Wave generation

With regard to tsunami applications the most appropriate choice would be incident
waves with a long elevation following a steep front, or a long trough terminated by a
steep gradient, in either case reflecting common characteristics of tsunamis in coastal
waters. However, limitations on the wave paddle motion rendered the creation of
such waves with appreciable amplitudes impossible and solitary wave-like pulses were
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employed instead. Within the dispersive long-wave regime the vertical distribution of
horizontal velocity is nearly uniform, which implies that a vertical paddle in principle
may produce any wave profile accurately, if the Lagrangian trajectories are computed.
Details concerning the generation of solitary waves in this way (Gorings method) as
well other wave profiles are given in Synolakis (1990). For high-amplitude solitary
waves, on the other hand, dispersive long-wave theory is not adequate. Utilizing the
fully nonlinear and dispersive solution of Tanaka (1986) we have obtained vertically
averaged trajectories that have been employed in a generalized Gorings method. Even
though the paddle still fails to reproduce the correct velocity profile, in this manner we
are able to produce very close approximations to solitary waves with amplitudes up to
half the depth. This is the highest wave we attempt to create, due to the limitations on
the wave paddle. However, to approach the breaking limit this amplitude is insufficient
and we have to resort to other, and cruder, generation techniques. Hence, we abandon
Gorings method and invoke a strong impulsive motion of the paddle that conveys
more energy to the water and thus produces higher waves. Of course, these are not
perfect solitary waves at the outset, but for the higher amplitudes, at least, nearly
solitary wave-like shapes evolve within a couple of metres in the tank.

Experiments are reported for four different incident waves. Their properties may
be summarized as follows

I: A/h = 0.12. A gentle, long wave, well within regime (a) as described in § 2.4,
which should be described well by dispersive long-wave theory and is the only one
that displays significant deviations from a solitary wave shape. This wave serves
mainly as a check on the experimental procedure and numerical model.

II: A/h = 0.53. A steep wave with amplitude just below the limit to class (b)
according to (2.8). This case is mainly useful for comparison case IV below.

III: A/h = 0.335. A moderately high incident wave (regime a) close to a solitary
wave. It should be described rather well by a Boussinesq-type model in finite depth. At
the beach, on the other hand, it becomes rather steep and challenging for long-wave
theory.

IV: A/h = 0.665. This wave is close to the steepest one we were able to produce
with no breaking from generation and past maximum run-up and is well within regime
(b) according to (2.8). Emphasis is put on velocity and acceleration distributions when
the wave front is at its steepest.
Details on the measurement of the amplitudes are given in § 3.1.

The paddle motion is governed by a input signal with the voltage specified by
a fifth-order polynomial that ensures continuous second derivatives. For gentle
paddle motion the response of the paddle is nearly perfect, in the sense that its
position is always proportional to the input voltage. However, this is not case for
the rapid paddle motion employed in the present investigation. Hence, in every
experiment the actual paddle position is measured, by means of a 1 kHz magnetic
digital measurement system (Jensen & Grue 2002). These measurements are used as
input for the Boussinesq model. The duration and total displacement for cases I to IV
are given in table 2, while displacements as a function of time are shown in figure 2.
For cases I, II and III the total paddle displacement is identical, while different
amplitudes and wavelength are produced by changing the speed of the paddle. The
displacement for case IV is the largest possible, due to limitations on the wave maker,
and to produce the high amplitudes of cases II and IV the paddle motion must be
significantly quicker than the particle motion in the corresponding solitary waves.

With a smaller depth, h = 10 cm, we wish to reproduce the non-dimensional paddle
motion from figure 2. Save for viscous and capillary effects, we should then obtain a
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Case Dmax (cm) T (s)

I 28.69 3.333
II 28.69 0.714
III 28.69 1.429
IV 36.75 1.000

Table 2. Paddle parameters: D is displacement and T is period.
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Figure 2. Non-dimensional paddle motion for all cases.

wave motion similar to the one for h = 20 cm, with all lengths halved and the time
scale reduced by a factor

√
1/2. Due to the imperfect, but highly repeatable, response

of the wave paddle, this is not obtained simply by scaling the voltage distribution.
Instead the correct voltages for h = 10 cm are obtained by an iteration procedure
where deviations of the measured paddle motion from the desired one, are used to
adjust the input voltage.

2.6. Boussinesq simulations

For each case the Boussinesq model is run with a series of resolutions, ranging from
80 to 10 000 points covering the whole wave tank. Close convergence is generally
obtained for the coarsest of these resolutions. However, small-scale features with
slower convergence are observed at the shoreline during the first run-up phase that
is characterized by a very steep wave front. The coarsest grids employed for cases II
and IV yield smooth run-up. Even though the maximum steepness during run-up still
increases with resolution, good convergence is observed otherwise (maximum run-
up height etc.). For finer grids the solution passes the singularity (discussion below
equation (2.5)) and then rapidly breaks in the sense that ∂x/∂a � 0. It is tempting
to assume that quantities like run-up heights obtained from the coarse grids may
still be of significance. However, according to the Appendix this is doubtful since the
Boussinesq equations do not reproduce the behaviour of steep wave fronts properly.
Also the formulation of PG yields breaking during run-up for cases II and IV and
refined grids.

Even for case III there are some small-scale features that becomes resolved only
for very fine grid (figure 3a), but overall convergence has already been obtained for
160 points.
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Figure 3. (a) Progression of run-up front for case III, between t = 3.46 s and t = 3.71 s, from
Boussinesq simulations with 160, 1280 and 2560 grid points. The interval between each surface
is 0.0501 s. (b) Run-up heights (cm) from the Boussinesq model as function of time (s) for
cases I to III. The numerical results are compared to the ‘parabola’ solution as explained in
the text.

As noted in § 2.4 gravity dominates in the run-up tongue for bores. Assuming
that this may be the case for steep non-breaking waves also we anticipate that the
parabola approximation

R ≈ Rmax − 1
2
g sin θ cos θ(t − tm)2 (2.10)

is valid around the time of maximum run-up, tm. According to figure 3(a), this is
indeed the case for our Boussinesq simulations, except for the gentle case I. The curve
for case II is based on a coarse-grid solution.

3. Propagation in finite depth
3.1. Incident waves

To characterize incident waves and verify the PIV procedure a set of PIV and wave
gauge measurements were taken in constant depth, either in the absence of, or in
front of, the beach. In both cases, reflection from the slope, beach or endwall did not
affect the leading crest of the wave markedly.

Comparisons of measured velocities and wave heights are made with solitary waves
as obtained by the method of Tanaka (1986) as well as our Boussinesq model, run
with the actual paddle motion as boundary input (see § 2.3). For the Tanaka solution
Cauchy’s theorem was applied to the complex velocity (u − iv) to obtain the velocities
below the free surface.

Time gauge measurements at 3.775 m from the paddle (h = 20 cm, no beach), are
compared with theory in figure 4. Cases II to IV are close to the solitary wave
solution of Tanaka. The long and moderately nonlinear wave of case I has not yet
produced a solitary wave at this stage, but is, on the other hand, described well by
the Boussinesq model. For cases II and IV the Boussinesq model deviates strongly
from measurements, while the deviations are smaller, but still appreciable, for case III.
It is noteworthy that the digitized surfaces from images (table 3) yield a slightly lower
amplitude for case III, indicating a somewhat reduced error for the Boussinesq model.

In the PIV measurements with h = 20 cm the distance from the wave maker to the
local origin of the FOV is 3.705 m. Other parameters for the PIV measurements in
deep water are listed in table 3, which also summarizes the computed and measured
amplitudes.
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Figure 4. Wave elevation in deep water: comparison between theory and measurements.

Case ttr (s) �t1 (ms) A (PIV) A (Bouss.) �x (Bouss.) A (WG)

I 3.85 12 2.4 2.53 — 2.5
II 2.57 6 10.73 9.12 −9.5 10.7
III 2.97 10 6.64 6.54 −3.2 6.9
IV 2.57 4 13.25 11.18 −9.1 13.2

Table 3. Amplitudes A (in cm), from PIV images (PIV), Boussinesq simulations (Bouss.)
and wave gauges (WG). The phase lag, �x, is defined as the difference (in cm) between the
maximum of the digitized surfaces and the Boussinesq solution at t = ttr , which is the trigger
time of the PIV measurements. Negative values correspond to delayed simulated waves. The
digitized surface of case I has error due to unfavourable camera angle. Hence, the extracted
amplitude is uncertain to a few mm. �t1 is the time increment between the two images are
used in the velocity calculation.

Figure 5 shows the full velocity field (case IV), both for PIV and the Tanaka
solitary wave solution. The free surfaces in the digital images are severely over-
exposed. Nevertheless, we observe good agreement for the surface, while experiments
and theory are almost identical concerning velocities. The scatter between five different
runs is generally found to be less than 1%, but larger immediately beneath the free
surface. This is to be expected because the noise in the correlation peak increases
when the particles cross-correlate with the highly exposed surface. By a combination
of PIV and the reflective mode of the free-surface gradient detector (FSGD) technique
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Figure 6. Wave gauge measurements for case IV. The solid lines are composed of four runs
with h = 20 cm, while the dashes respresents three runs with h = 10 cm.

it is possible to compute velocity vectors somewhat closer to the surface, see Dabiri
& Gharib (2001), but this is not attempted herein.

3.2. Viscous effects, wave attenuation

Wave gauge measurements are also performed for h = 10 cm. Significant deviations
were found for case IV (figure 6). Halving the equilibrium depth causes a reduction in
A/h of 0.04. This is probably due to viscous damping, which is more pronounced for
shallower water. We have no direct measurements of the amplitude variation along
the tank and base the assumption on results from the literature. A theoretical model,
based on laminar boundary layers, is found in Keulegan (1948). According to this
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model the attenuation of a solitary wave becomes

A = A0

{
1 + 0.237

(
A0

h

)1/4 (
νc0

8h3

)1/2 [
1 +

(
2h

b

)]
t

}−4

, (3.1)

where A0 = A(t = 0), ν is the kinematic viscosity, c0 is the linear wave speed and b

is the width of the tank. The model does not take turbulence or surface effects into
account. Shuto (1976) reported the partly empirical formula

A =
A0(

1 + 8
15

C1A0x/h2
) , (3.2)

where C1 is a friction coefficient based on measurements and is 0.0227 and 0.0137 for
water depth 10 cm and 20 cm, respectively. Equation (3.2) implies a stronger damping
than (3.1). In our experiments the wave is not close to a solitary wave all the way from
the paddle. Nevertheless, equation (3.2) should give a good indication of damping
due to viscous and surface effects. Employing (3.1), with the appropriate parameters
for case IV, we obtain a reduction of A/h of 0.007 and 0.011 for d = 20 cm and
d = 10 cm, respectively. The corresponding results for (3.2) are 0.055 and 0.086. In
view of the inaccuracies of the surface measurements and the deviations from a perfect
solitary wave shape the latter is in good agreement with the amplitude difference from
our wave gauge measurements. For case III the scaling effect is smaller relative to
experimental errors. In addition the larger relative difference between the amplitude
from the images and that from the wave gauge (table 3) casts doubt on the latter.
However, the gauge data indicate a reduction in A/h of order 0.01 when h is halved.
This is of the same order of magnitude as the prediction by (3.2).

4. Experimental results
We have utilized PIV in several fields of view (FOVs) near the equilibrium shoreline.

For illustration the run-up of wave IV, together with the camera set-up, is shown in
figure 7.

4.1. Case I

In figure 8 we compare surfaces from the experiments with the Boussinesq model for
case I. The agreement seems very good for t = 4.8 s while discrepancies are apparent
for t = 4.4, 4.55 s, when the temporal variation of the surface is faster. However, it
should be noted that the surface at t = 4.4 s is not accurately obtained, due to light
refraction effects in the experiments.

A few selected vertical velocity profiles are depicted in figure 9 and compared to
profiles that have been reconstructed from the Boussinesq model (see § 2.3). For the
horizontal velocities we observe an error, systematic in the sense that the Boussinesq
solution seems to be 0.05 ahead, while a conservative estimate of errors (amplitude,
equilibrium depth, solitary wave celerity) during propagation in finite depth amounts
to 0.02 s. However, if we shift the Boussinesq solution by 0.05 s, both the weak
vertical variation and the magnitude agree very closely with the experiments. This is
demonstrated in figure 10, where the distribution of vertically averaged velocities in
the FOV is compared. For the much smaller normal velocities the scatter range in the
experiments is larger in relative terms, and the Boussinesq solution is within this. In
general, the overall agreement is as good as can be expected for case I and very good
agreement concerning velocities can be obtained by a systematic time shift. However,
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Figure 7. Run-up of wave IV.
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Figure 8. Case I: extracted surfaces from the PIV (exp.) images compared to
the Boussinesq solution.

simultaneous agreement for velocities and surface cannot be obtained in this manner.
Even though the extraction of the free surface is hampered by errors (in particular
for t = 4.4 s) some of the deviations are likely to be due to the inaccuracy of the
Boussinesq equations employed.

4.2. Case III

For the steeper wave of case III the errors of the Boussinesq equations are already
significant in finite depth (see § 3.1). In an early stage of the run-up figure 11 shows
that the deviations for the surfaces are greater than those of case I, but the agreement
is still good. This time we are not able to reproduce the horizontal velocities by
introducing a consistent time shift in the Boussinesq solution. According to figure 12
we need a positive time shift for t = 3.47 s, as for the propagation in constant depth
(see § 3.1), whereas a negative shift gives best agreement for t = 3.7 s. Inview of the
short interval between these two measurements, it seems that the Boussinesq solution,
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in a sense, evolves much too fast. This can also be inferred from the surfaces in
figure 11. According to the computed and measured surfaces at t = 3.47 s, the surface
gradient of the Boussinesq model is markedly larger than the measured one. We have
insufficient data to decide whether over-estimation of the wave front steepness may
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be a characteristic feature of the Boussinesq model or if the model is mainly out of
phase with a delayed occurrence of the maximum surface steepness. Accelerations
are obtained from the measurements with limited precision only. However, according
to figure 13 there is good agreement with the Boussinesq results for the averaged
horizontal accelerations at t = 3.47 s, when the magnitude is comparable to g. To
some extent the over-representation of dispersion in the Boussinesq model may
counterbalance the excess steepness as far as horizontal accelerations are concerned.
On the other hand, a significant deviation in the accelerations may be obscured
by experimental errors. The much smaller experimental accelerations at t = 3.7 s are
nearly lost in the noise level. Still, the results at t = 3.7 s may indicate important
qualitative and quantitative deviations in the Boussinesq solution at this stage.
Anyhow, the interval 3.47 s < t < 3.7 s is characterized by rapid variations and
a complete change in the nature of the flow. That such errors are pronounced at
this stage of the run-up is not surprising since the fluid front is steep and evolves
very rapidly, both of which challenge a long-wave expansion. It is not surprising
that the Boussinesq model becomes rather inadequate at this stage, but to assess its
performance in a more complete way, we would need measurements at more times,
in more FOVs and, preferably, more information on the shoaling phase.

It is tempting to assume that the investigated time for case I corresponds to t = 3.7 s,
rather than t = 3.47 s, for case III, since the wave is well past the equilibrium shoreline.
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The too fast evolution of the Boussinesq velocities for case I may thus be due to
errors in the non-hydrostatic pressure of the same kind as for case III, but of much
smaller magnitude.

4.3. The steep waves: cases IV and II

Postponing the description of case II, we now turn to the highest of our waves
and investigate the run-up of case IV waves in some detail. During propagation
in finite depth the incident wave has maximum horizontal velocity near the peak,
while the largest horizontal accelerations are found in the wave front, not far from
the position of maximum surface gradient. In shoaling water the front steepens and
become shorter, but with the same qualitative distributions of horizontal velocity and
accelerations. However, when the wave reaches the equilibrium shoreline the nature of
the motion changes from being wave-like to become a material fluid body ascending
the beach. An image, overlaid with the velocity field from PIV, for t = 3.05 s is shown
in figure 14(a). The wave has just started to climb the beach and we can see an
almost vertical front of the wave. At this stage the dominant feature of the flow is a
large, nearly uniform velocity parallel to the beach slope. However, there are small
spatial variations in the velocity field that are important because they determine the
evolution (deformation) of the shape of the run-up front. Hence, we may regard the
velocity field as a uniform translation, on which there is superimposed a ‘deforming’
velocity field, vd , of smaller magnitude, that contains all the gradients:

vd(x, y, t) = v(x, y, t) − u0(t)(i − tan θ j ). (4.1)

We seek to identify and discuss vd from the PIV measurements. The translation
velocity u0 is slightly ambiguous, but the actual choice is not crucial as long as the
residual field provides a clear pattern. A more grave problem is that the errors in
the measurements of the large velocities (up to 1.5 m s−1) are augmented, in relative
terms, when retained in the much smaller residual field (typically 0.1–0.2 m s−1). For
t = 3.05 s, we have displayed vd in figure 15. Even though the errors are noticeable,
the repeatability is still rather good with a scatter that is generally less than 1 cm s−1.
In figure 15 we clearly see a pattern, inherited from the incident wave, with higher
horizontal velocities in the upper region of the wave front than those at the toe.
This implies that the front is still steepening. Since the maximum inclination of the
surface at t = 3.05 s is virtually vertical, this means that the wave front soon becomes
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Figure 15. ‘Deforming’ velocity, vd (u0 = 125 cm s−1) at t = 3.05 s for case IV. The different
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overturning. However, no clear signs of breaking are visible in video recordings or
subsequent PIV images. This is due to the acceleration distribution. Accelerations are
computed from the PIV velocities by a pseudo-tracing technique, as explained in § 2.2,
and displayed in figure 14(b). Certainly, the accelerations are (at least) as sensitive to
experimental scatter as vd . However, even though there are significant errors and no
accelerations are measured in the vicinity of the fluid surface, we clearly observe a
distinct pattern with large (compared to g), mainly horizontal, accelerations behind
the toe, while the accelerations close to the top of the run-up front are much smaller,
and with a strong downward component. This picture is very different from that of
a breaking wave in deep water (New, McIver & Peregrine 1985). Clearly, the run-up
acceleration pattern in figure 14(b) opposes the development of breaking and indicates
a tendency toward thinning of the fluid front. Consequently, at the slightly later time
t = 3.12 s (figure 16) the overall picture of the flow has changed: we observe the
embryo of an on-shore jet (see the introduction) with a clear stretching of the fluid
tongue according to vd . The evolution of this early stage in the run-up is rapid, due to
large accelerations possessing strong gradients. This bears a resemblance to features
of wave impact on vertical walls, where a flip-through may lead to vertical jet up
the wall (Cooker & Peregrine 1992). However, it must be noted that that paper
reports accelerations that are an order of magnitude greater than those we have
captured in the experiments. The occurrence of breaking during run-up is then deter-
mined by the competition between two features, namely the velocity distribution con-
veyed from the incident wave, which points to breaking, and the opposing acceleration
field.

A few additional comments should be made on the run-up of a nearly breaking
wave. First we have the analogy to the classical dam-break problem (Stoker 1957).
To make this link clearer we introduce a coordinate system with axes parallel and
normal to the beach plane. Moreover, at a time when the fluid front is nearly
vertical, we choose the initial velocity of the system equal to the particle velocity at
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the instantaneous shoreline, while the acceleration of the system is specified as the
component of gravity parallel to the slope. We then arrive at a formulation of an
initial value problem with a steep fluid front, nearly at rest, and an external force
field (gravity + fictitious) normal to the bottom. The remaining difference from the
standard dam-break problem is the presence of velocities behind the front, which
presumably are not crucial. In the shallow-water context Peregrine & Williams (2001)
report the connection between swash from incident bores and dam-break, including
some consideration of velocities behind the bore front. For an ideal fluid the dam-
break problem yields large accelerations at the bottom of the fluid front. If the
contact angle between fluid and bottom is 90◦, or larger, we obtain a singularity. The
qualitative agreement with the accelerations in figure 14(b) is striking (see figure 19
in the Appendix). Naturally, the presence of the thin viscous boundary layer in
the experiments prevents too extreme accelerations. We are not able, in any case,
to measure very close to the fluid boundary. The dam-break analogy is elaborated
further in the Appendix.

From the acceleration measurements we may also infer that a long-wave
approximation, even a higher-order one, is not likely to be valid at this stage in run-
up, when the on-shore jet is initiated. This is seen from the large vertical accelerations
in figure 14(b) as well as the profiles in figure 17, which are both irreconcilable with
long-wave theory. This is consistent with the analysis of the Appendix with respect
to the dam-break problem in a long-wave context.

The somewhat gentler case II resembles case IV. In the run-up zone the wave is
slightly less steep, but the quantitative patterns for the velocities and accelerations are
similar, with a transition to a stretching velocity field and formation of a jet (results
not shown).

For case IV the Boussinesq solution breaks close to t = 3.05 s. However, we observe
fair agreement between computed velocities at the slightly earlier time t = 3.045 s and
experiments. Horizontal velocity profiles are shown in figure 17.
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Case A/h A/h R/A (B.) R/A (Syn.) R/A R/A

I 0.12 — 3.7 3.9 3.7 —
II 0.53 — ∗∗ ∗∗ 3.3 —
III 0.335 0.34+ 4.1 ∗∗ 3.5 3.1
IV 0.655 0.62 ∗∗ ∗∗ 3.1 3.1

h (cm) 20 10 — — 20 10

Table 4. Run-up height; B. – Boussinesq simulations and Syn. – analytic result derived from
(2.9). The values marked by ∗∗ are dubious or meaningless due to wave breaking in the applied
model. +: the amplitude for case III and h = 10 cm is uncertain and probably a little too high
(§ 3.1), but the scaling effect in R/A is still significant.

4.4. Run-up observations

We have also measured the run-up heights by direct eye observation. With regard to
scaling effects, we have also measured run-up for cases III and IV in the scaled-down
experiments with h = 10 cm. For the steeper incident waves of cases II and IV, there
were marked lateral variations of the front of the experimental run-up tongue when
this approached the maximum elevation. As stated in § 2.1 this may be mainly due to
a tiny curvature in the profile of the upper part of the beach. Preliminary tests with
another beach, carefully constructed to avoid this problem, indicate that this is the
case. The subjectivity of the method employed, combined with the slightly ambiguous
definition of the fluid front for cases II and IV, points to significant errors. However,
the results were repeatable within about a cm. The observations are summarized in
table 4, together with theoretical values. One result that may seem surprising is the
the apparent, though gentle, decrease of the ratio R/A (run-up height to amplitude
of incident waves) with A/h, unlike the long-wave theory that predicts an increase in
R/A with A/h. This may partly be due to viscosity and capillary effects, which are
important on the laboratory scale, particularly in the thin upper part of the run-up
tongue. Experiments by Langsholt (1981), reviewed in Pedersen & Gjevik (1983),
showed a scaling effect for solitary wave run-up on a plane with θ = 10◦, in the sense
that R/A increased markedly with h for constant A/h. It should be noted that these
experimental data did not systematically include amplitudes as high as cases II and
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Figure 18. Case IV, ttr ≈ 3.05 s (h = 20 cm) and ttr ≈ 2.12 s (h = 10 cm) for two different
times. (a) Surface profiles. (b) Velocities. The upper region of nearly constant u, observed for
ttr = 2.121 s is due to experimental errors near the surface. The remainder of this profile, as well
as almost the whole profile for ttr = 2.125 s, is measured accurately with good repeatability.

IV. In accordance with Langsholt we find a marked decrease in R/A for case III
when h is reduced to 10 cm. The absolute run-up lengths are longer for case IV,
which presumably should give more pronounced effects of friction. In spite of this,
we obtain the same value R/A = 3.1 in both depths, which at first sight suggests
that there is no scaling effect for case IV. However, that such an effect probably is
present can be inferred from the amplitudes in finite depth. According to § 3.2, A/h

of case IV is reduced from 0.66 to 0.62 when the depth is halved. If we interpolate
between the results of cases II and IV, we find that A/h = 0.62 would give an R/A

slightly above 3.2 for h = 20 cm. However, it is noteworthy that the scaling effect is
that small for the higher amplitudes. The explanation is probably to be found in the
thickness and other characteristics of the run-up tongue. Unfortunately, we have no
measurements of these features at present.

We find good agreement between the long-wave theories and experiments for the
gentle wave of case I, where the viscous effects should also be small since the run-up
tongue is comparatively thick and short. It may be argued that (2.9) is not relevant for
case I since the incident wave deviates significantly from a perfect solitary wave. But,
the Boussinesq model yields R/A = 3.69 for an incident solitary wave, completely
consistent with (2.5), which implies that case I yields the same maximum run-up as
a solitary wave of the same height and that (2.9) does apply. According to equation
(2.7) the analytical result (2.9) is meaningful only for case I, since the theory behind it
predicts breaking for cases II to IV. Naturally, the Boussinesq model has a somewhat
wider range of validity, but overestimates the run-up for case III substantially. For
case III we observe a significant scale dependence, which points to a reduced error
at a larger scale, as in an actual swell or tsunami situation. For cases II and IV the
maximum run-up from the Boussinesq model is conceptually dubious (see § 2.6).

4.5. Scaling effects

Scaling effects on the beach were also checked for case IV. Surface profiles and
horizontal velocities were extracted from the experiments with depth h = 20 cm and
compared with h = 10 cm. Figure 18(a) shows some minor deviations in the surface
profile at the ‘toe’ of the wave, possibly an indication of a boundary layer effect.



184 A. Jensen, G. K. Pedersen and D. J. Wood

The difference in the horizontal position is not large, �x/h ≈ 0.07, and might be
caused, partly, by the accuracy of the triggering. Figure 18(b) shows a difference in
the velocities of about 4%.

5. Conclusion
Our investigation is mainly devoted to the phase of run-up where the wave fronts

are at their steepest, namely the vicinity of the equilibrium shoreline. Utilizing
the PIV technique, we have obtained good velocity measurements with a high
degree of repeatability. Accelerations, on the other hand, have been obtained only
under favourable conditions, and then with limited accuracy. Nevertheless, important
information is present in the acceleration fields that have been found.

For a gentle incident wave, with A/h = 0.12, we found close agreement with the
Boussinesq model, though there are minor discrepancies. The incident solitary wave
with amplitude A/h = 0.34 becomes rather steep during run-up, but is yet far from
breaking. The Boussinesq model still performs quite well, but the differences with the
experiments are much more pronounced than for the previous case. The generated
solitary wave has excess width due to over-representation of dispersion in the model.
Moreover, its evolution early in the run-up is too rapid.

Close to the equilibrium shoreline, the highest incident wave (A/h = 0.66) becomes
a body of water with a very steep head. This moves with a high and nearly uniform
celerity, but the velocity variations can still be extracted from the PIV measurements.
At a moment when the surface is almost vertical the velocity distribution still
implies further steepening, which means that the wave becomes ‘overhanging’. This
is in fact observed directly in complementary measurements with h = 10 cm (see
figure 18). However, the steepening deformation pattern is swiftly reversed through
a transformation of the velocity distribution to a stretched one, pointing to the
generation of a smooth run-up tongue. Calculation of accelerations from the PIV
velocities reveals a pattern consistent with the rapid qualitative change of the velocity
field. The acceleration pattern is qualitatively very similar to the dam-break problem.
Like the dam-break problem large accelerations are present near the contact point
between the surface and bottom, but we have so far not been able to resolve this region
accurately in the PIV measurements. It is clear that vertical structures are important
for the generation of the run-up tongue from the collapse of the steep wave front.
Moreover, presuming that the collapse of a bore may have similar features, this casts
doubt on the applicability of depth-averaged descriptions for bore run-up. However,
further investigations are needed to establish any general conclusion on modelling
of breaking waves. Such studies should involve extensive model testing as well as
measurements on a wider spectrum of incident waves, preferably including fully
developed bores. Improved experimental practice, enabling resolution of boundary
layer, run-up tongues and turbulence is also desirable.

Measurements of maximum run-up heights is a secondary issue in the present
investigation. Both the Boussinesq model and the analytical shallow-water result
from Synolakis (1987) are good for the incident wave with A/h = 0.12. For the
higher incident waves the long-wave theories overestimate the maximum run-up
substantially. Moreover, unlike the theories, the experiments display a slight decrease
in R/A with A/h, even though none of the waves are breaking. To some extent both
this trend and the discrepancies with the theories may be attributed to viscous and
capillary effects. However, that R/A for the highest wave displays very little change
when h is reduced from 20 cm to 10 cm suggests that this is not the full explanation.
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Most likely, there is a parameter range with nearly constant or reduced R/A as a
function of A/h between the long-wave and breaking regimes. Moreover, the existence
of this, as well as the lack of scaling effects, should probably be understood through
the transition between the wave front and the swash. Unfortunately, at present we
have insufficient data to support a firm conclusion.

This work was conducted under the Strategic University Programme ‘General
Analysis of Realistic Ocean Waves’ funded by the Research Council of Norway.
Discussions with J. Kristian Sveen, Didier Clamond and John Grue, and the technical
assistance by Arve Kvalheim and Svein Vesterby are gratefully acknowledged.

Appendix. The dam-break problem
In the dam-break problem a body of water on a flat bed is released from rest under

the action of gravity. Most attention has been given to the case with a semi-infinite
fluid shelf with a vertical front. At the first instant a potential flow solution of the
problem, yielding pressures and accelerations, is readily obtained by Fourier series.
At the toe of the fluid front the potential solution displays a singularity, giving
infinite values for the acceleration. The presence of this feature is easily inferred
from the structure of the boundary value problem. At the free surface the pressure
is zero, while the normal derivative at the bottom must counterbalance gravity to
give zero vertical acceleration. At a contact point between the free surface and the
bottom this implies large horizontal gradients for contact angles close to 90◦, whereas
perpendicular contact leads to a double-valued vertical derivative and singularity. For
large times there exist asymptotic shallow-water solutions for the evolution of the
fluid front. The key point is that the front rapidly evolves into a thin tongue with no
bore-like features. This kind of dam-break problem is reviewed in Stoker (1957), while
a fresh experimental and theoretical investigation is reported in Stansby, Chegini &
Barnes (1998). Other initial shapes have also been investigated, with relevance to, for
instance, the collapse of fluid columns produced by underwater explosions.

A simple initial shape, not very different from the wave front in the early stages
of run-up, is a semicircle. Again discrete Fourier series can be applied for the initial
pressure distribution. Details are given in Martin et al. (1952), which also contains
numerical solutions for larger times, still based on Fourier series. For the acceleration
at the free surface Martin et al. (1952) reported the closed-form expression

ar = −2g

π

(
1 + cos θ ln

(
tan

θ

2

))
, (A 1)

where θ is the angle between the radii and the positive horizontal axis. We note
that ar is scaled only by g and that the tangential acceleration equals the tangential
component of gravity. The acceleration distribution in the interior is given by a
Fourier series that converges except at the contact points. The result is displayed in
figure 19. In spite of the differences with respect to surface shape etc. the similarity
with the measured accelerations in figure 14(b) is striking.

Naturally, the Boussinesq equations are not likely to reproduce the circular dam-
break accurately. However, in view of the relations between these problems and run-
up, it would be instructive to observe how long-wave theory fails. In fact, generalized
dam-break problems, including cases with contact angles less than 90◦ would probably
serve as excellent benchmark problems for the applicability of simplified theories in
general. Assuming a horizontal bottom and zero velocities, the Boussinesq equations
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problem, formulated in terms of the pressure, is also indicated in the figure.

0

–0.4

–0.8

–1.2

–1.6
–0.8 –0.4

x/r

(a)

Du
Dt

0

Full
Bouss.
Hyd.

0

–0.4

–0.8

–1.2

–1.6
–0.8 –0.4

x/r

(b)

0

D2H

Dt2

Figure 20. Comparison of full potential theory and long-wave equations for the circular
dam-break problem. The accelerations are scaled by gravity.

(2.5) simplify and we may readily obtain second-order ordinary differential equation
for either Du/Dt or D2H/Dt2 at t = 0:

Du

Dt
− β

3H

d

dx

(
H 3 d

dx

Du

Dt

)
= −dH

dx
, (A 2)

D2H

Dt2
− β

3H

d

dx

[
1

H

d

dx

(
H 2 D2H

Dt2

)]
= H

d2H

dx2
, (A 3)

where the scaling is as in § 2.3. We observe that the left-hand operators become
regularly singular when H has a zero of order 1 or 1

2
. When the contact angle is

1
2
π, as for a semicircle, the right-hand sides are also singular. In the hydrostatic

case this singularity is conveyed directly to the solutions and we obtain singularities
that are much stronger than for full potential theory as defined in figure 19. When
the dispersive terms are retained, on the other hand, the singularity vanishes and
the acceleration becomes finite at the contact points (we have local expansions like
Du/Dt = κ0 + κ1/2(x − xc)

1/2 + ··, where xc is the position of the contact point). Even
though the absence of a singularity is in accordance with the physics, it must be
regarded as a shortcoming of the Boussinesq theory. For the run-up simulations
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the boundary condition at the fluid tip was H = 0. This is not consistent with
the behaviour of D2H/Dt2 as given by (A 3). However, in numerical solutions
of the equations we obtain convergence, when refining the grid, toward a unique
solution, regardless of the boundary condition mismatch. The solutions are displayed
in figure 20 together with the corresponding quantities from the full potential flow
solution. Apart from the neighbourhood of the contact point the Boussinesq solution
displays very good accuracy for Du/Dt . The agreement for D2H/Dt2 is not quite as
good, indicating that Boussinesq theory is challenged not only by the steep gradients
at the contact point, but also by the small overall length-to-depth ratio of the fluid
body. Nevertheless the Boussinesq solution is much better than the hydrostatic one
and they both predict large horizontal accelerations close to the fluid tip.
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